curve shape - определение. Что такое curve shape
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое curve shape - определение

MATHEMATICAL FUNCTION HAVING A CHARACTERISTIC "S"-SHAPED CURVE OR SIGMOID CURVE
Sigmoid curve; Sigmoidal curve; Double sigmoid; S-shape curve; Double sigmoid curve; Sigmoids; S-shaped curve; Squashing function; S-curve (math); Sigmoid shaped; Sigmoid shape; S-shaped; Sigmoid-shape; Sigmoid-shaped; Sigmoidal function
  • Plot of the [[error function]]
  • Some sigmoid functions compared. In the drawing all functions are normalized in such a way that their slope at the origin is 1.
  • Inverted logistic S-curve to model the relation between wheat yield and soil salinity
  • The [[logistic curve]]

Epidemic curve         
  • Common source outbreak of Hepatitis A in Nov-Dec 1978
A STATISTICAL CHART USED IN EPIDEMIOLOGY TO VISUALISE THE ONSET OF A DISEASE OUTBREAK.
Epi curve; Epidemiological curve
An epidemic curve, also known as an epi curve or epidemiological curve, is a statistical chart used in epidemiology to visualise the onset of a disease outbreak. It can help with the identification of the mode of transmission of the disease.
Bezier curve         
  • Animation of the construction of a fifth-order Bézier curve
  • cyan: ''y'' {{=}} ''t''<sup>3</sup>}}.
  • Abstract composition of cubic Bézier curves ray-traced in 3D. Ray intersection with swept volumes along curves is calculated with Phantom Ray-Hair Intersector algorithm.<ref>Alexander Reshetov and David Luebke, Phantom Ray-Hair Intersector. In Proceedings of the ACM on Computer Graphics and Interactive Techniques (August 1, 2018). [https://research.nvidia.com/publication/2018-08_Phantom-Ray-Hair-Intersector]</ref>
  • Animation of a linear Bézier curve, ''t'' in [0,1
  • Animation of a quadratic Bézier curve, ''t'' in [0,1
  • Construction of a quadratic Bézier curve
  • Animation of a cubic Bézier curve, ''t'' in [0,1
  • Construction of a cubic Bézier curve
  • Animation of a quartic Bézier curve, ''t'' in [0,1
  • Construction of a quartic Bézier curve
  • Quadratic Béziers in [[string art]]: The end points ('''&bull;''') and control point ('''&times;''') define the quadratic Bézier curve ('''⋯''').
CURVE USED IN COMPUTER GRAPHICS AND RELATED FIELDS
Bezier curve; Bezier curves; Bézier Curve; Bernstein-Bézier curve; Bernstein-Bezier curve; Besier curve; Bezier cubic; Bézier cubic; Bezier splines; Bezier Curve; Cubic bezier; Conic Bezier curve; Conic Bézier curve; Bezier path; Cubic bézier curve; Cubic Bézier curve
<graphics> A type of curve defined by mathematical formulae, used in computer graphics. A curve with coordinates P(u), where u varies from 0 at one end of the curve to 1 at the other, is defined by a set of n+1 "control points" (X(i), Y(i), Z(i)) for i = 0 to n. P(u) = Sum i=0..n [(X(i), Y(i), Z(i)) * B(i, n, u)] B(i, n, u) = C(n, i) * u^i * (1-u)^(n-i) C(n, i) = n!/i!/(n-i)! A Bezier curve (or surface) is defined by its control points, which makes it invariant under any affine mapping (translation, rotation, parallel projection), and thus even under a change in the axis system. You need only to transform the control points and then compute the new curve. The control polygon defined by the points is itself affine invariant. Bezier curves also have the variation-diminishing property. This makes them easier to split compared to other types of curve such as Hermite or B-spline. Other important properties are multiple values, global and local control, versatility, and order of continuity. [What do these properties mean?] (1996-06-12)
Blancmange curve         
FRACTAL WHICH IS CONSIDERED TO RESEMBLE A BLANCMANGE
Blancmange function; Takagi curve; Takagi-Landsberg curve; Midpoint displacement; Takagi fractal curve; Takagi function; Takagi’s function; Takagi Fractal Curve
In mathematics, the blancmange curve is a self-affine curve constructible by midpoint subdivision. It is also known as the Takagi curve, after Teiji Takagi who described it in 1901, or as the Takagi–Landsberg curve, a generalization of the curve named after Takagi and Georg Landsberg.

Википедия

Sigmoid function

A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or sigmoid curve.

A common example of a sigmoid function is the logistic function shown in the first figure and defined by the formula:

S ( x ) = 1 1 + e x = e x e x + 1 = 1 S ( x ) . {\displaystyle S(x)={\frac {1}{1+e^{-x}}}={\frac {e^{x}}{e^{x}+1}}=1-S(-x).}

Other standard sigmoid functions are given in the Examples section. In some fields, most notably in the context of artificial neural networks, the term "sigmoid function" is used as an alias for the logistic function.

Special cases of the sigmoid function include the Gompertz curve (used in modeling systems that saturate at large values of x) and the ogee curve (used in the spillway of some dams). Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1.

A wide variety of sigmoid functions including the logistic and hyperbolic tangent functions have been used as the activation function of artificial neurons. Sigmoid curves are also common in statistics as cumulative distribution functions (which go from 0 to 1), such as the integrals of the logistic density, the normal density, and Student's t probability density functions. The logistic sigmoid function is invertible, and its inverse is the logit function.